
IMPROVING PERFORMANCE OF INDUCTIVE MODELS THROUGH AN
ALGORITHM AND SAMPLE COMBINATION STRATEGY1

1 Presented at The Twelfth International Conference on Tools with Artificial Intelligence,
Vancouver, British Columbia, November 13-15, 2000.

HALEH VAFAIE, PHD., DEAN ABBOTT*, MARK HUTCHINS, I. PHILIP MATKOVSKY

Northrop Grumman Information Technology,4800 Hampden Lane, Bethesda, MD 20814

*Abbott Consulting, San Diego, CA 92192

Multiple approaches have been developed for improving predictive performance of a system by creating
and combining various learned models. There are two main approaches to creating model ensembles.
The first is to create a set of learned models by applying an algorithm repeatedly to different training
sample data, the second applies various learning algorithms to the same sample data. The predictions of
the models are then combined according to a voting scheme. This paper presents a method for
combining models that were developed using numerous samples, modeling algorithms, and modelers
and compares it with the alternate approaches. The presented results are based on findings from an
ongoing operational data mining initiative with respect to selecting a model set that is best able to meet
defined goals from among trained models. The operational goals to be attained in this initiative are to
deploy data mining model(s) that maximizes specificity with minimal negative impact to sensitivity. The
results of the model combination methods are evaluated with respect to sensitivity and false alarm rates
and are then compared against other approaches.

Keywords:

1. Introduction

Combining models is not a new concept for the statistical pattern recognition, machine
learning, or engineering communities, though in recent years there has been an explosion
of research exploring creative new ways to combine models. Currently, there are two
main approaches to model combination. The first approach generates a set of learned
models by applying an algorithm repeatedly to different samples of the training data. The
second approach applies different learning algorithms to the same sample of data to
generate a set of learned models [1]. The predictions of the models are then combined
according to a voting scheme. The diverse research has also produced a proliferation of
terminology used to describe combining models developed using the same algorithm.
Elder and Pregibon [2] used the term Blending to describe “the ancient statistical adage
that 'in many counselors there is safety'”. The same concept has been described as
Ensemble of Classifiers by Dietterich [3], Committee of Experts by Steinberg [4], and
Perturb and Combine (P&C) by Breiman [5]. Jain, Duin, and Mao [6] call the methods
merely Combiners. However, the concept of combining models is actually quite simple:

 1

train several models from the same data set, or from samples of the same data set, and
combine the output predictions, typically by voting for classification problems and
averaging output values for estimation problems. The reductions in model bias (errors)
and variance have been shown to be significant.

For decision trees, Breiman [7] demonstrates bagging and ARCing improve single CART
models on 11 machine learning datasets in every case. Bagging merely creates multiple
classifiers from bootstrap samples of the training data, and then combines the decisions of
the individual classifiers via voting or averaging. Additionally, he documents that
ARCing, using no special data preprocessing or classifier manipulation (just read the data
and create the model), often achieves the performance of handcrafted classifiers that were
tailored specifically for the data.

Boosting, like Bagging, changes the training datasets by emphasizing some records over
others, though Boosting puts more weight (directly) on records that the classifier has
misclassified. The final decision is produced by a weighted sum of the classifiers, where
the weighting is based on the performance of the individual classifiers. In other research,
Dietterich [8] shows that bagging, boosting, or another method called randomization
always beats a C4.5 tree.

There is also a large body of literature describing model ensembles using neural
networks, Tumer and Ghosh [9] showed combining neural network classifiers with
identically distributed error variance reduces the error variance linearly with the number
of classifiers. Perrone and Cooper [10] showed that when combining neural networks
linearly, the combined model will lower mean squared error more than any of the
individual models, although this is only true for very restrictive circumstance: if there is
independence of the error correlation matrix. In both of these studies, however, restrictive
assumptions reduce the applicability to real problems, yet they show the power of the
combination process nevertheless. Other researchers have also shown the advantage of
combining the outputs of many neural networks, including using Bagging and Boosting
(e.g. [11], [12], [13], [14], and [15]).

Intuitively, it seems that producing relatively uncorrelated output predictions in the
models to be combined is necessary to reduce error rates. If output predictions are highly
correlated, little reduction in error is possible, as the "committee of experts" have no
diversity from which to draw, and therefore no means to overcome erroneous predictions.
Decision trees are very unstable in this regard as small perturbations in the training data
set can produce large differences in the structure (and predictions) of a model [16], i.e.,
decision trees are unstable. Neural networks are sensitive to data used to train the models
and to the many training parameters and random number seeds that need to be specified
by the analyst. Indeed, many researchers merely train neural network models changing
nothing but the random seed for weight initialization and produce significantly different

 2

models. Polynomial networks have considerable structural instability, as different data
sets can produce significantly different models.

There has been some success in combining models across algorithm types. Bauer and
Kohavi [17] discuss the possibility of combining models across algorithm types, although
they did not have success. Elder [18] called this approach Bundling and showed that it
out-performed individual models on average in a direct marketing application. This
approach also improved performance over a single model when applied to several other
data sets from the Machine Learning Repository at UC/Irvine [19]. The same conclusion
was found by Jain et al [6] on a digit classification problem. The work by Tresp and
Tanguchi [20] and Merz [1] are other examples of this approach.

It has been shown that a good model ensemble is one where the individual models are
both accurate and make their errors on different parts of the input [15]. So a case can be
made for combining models across algorithm families as a means of providing
uncorrelated output estimates because of the difference in basis functions used to build
the model. In fact, the manner in which the combination of models are assembled (voting,
averaging, and two types of advisor perceptrons) is not as important as performing some
kind of combination [21].

Regarding the bias – variance tradeoff, ensemble methods like Bagging and Bundling are
primarily variance reduction methods, that is, they reduce the likelihood of deploying a
poor model by reducing the error variance when evaluating models on out-of-sample
data. This does not mean that they cannot reduce model bias, and they do indeed, on
average, reduce model bias, but they do not necessarily reduce bias. Methods that operate
more directly on the modeling errors themselves, such as Boosting and ARCing, are more
effective at reducing model bias.

The previous work show that by introducing diversity, either in terms of the various
algorithms used or the sample training data sets, the overall performance is improved.
Our hypothesis is that by combining the two criteria, i.e., generating model ensemble
form models that were generated using different algorithms and training data set, the
maximum diversity is allowed in the ensemble and therefore, the results should further be
improved. The following section presents the real world problem domain, fraud
detection, we selected for our initial studies. The fraud detection problem has several
common issues which will be described in detail.

2. Problem Description

The detection of illegal, improper, or unusual transactions is a constant challenge for any
business. Both the private and public sectors have worked extensively to detect fraud in
their systems. The extent of fraud, while varying from application to application, can be
quite large. Cellular phone fraud alone costs the industry hundreds of millions of dollars

 3

per year [22], and fraudulent transfers of illegally obtained funds (money laundering) are
estimated to be as much as $300 billion annually [23].

For the current research, the problem included establishing a data set of known fraudulent
payments, a target population of over one million non-fraudulent payments, and a method
by which to leverage the known fraud cases in the training of detection models. As is
typical in fraud detection, the set of known cases was very small relative to the number of
non-fraud examples. Thus, the authors had to devise methods to reduce false alarms
without drastically compromising the sensitivity of trained models.

Rather than using a single fraud/not-fraud binary label for the output variable, four
fraudulent payment types, called types A, B, C, and D, was identified as comprising the
different styles of payments in the known fraud data. Although separating the known
fraudulent payments into types was not essential to the modeling process, the authors
believed that the additional information would aid classifiers in identifying suspicious
payments, and reduce false alarms. The primary reason for this belief was that the types
of known fraudulent payments had significantly different behaviors, which would cause a
classification algorithm to try to segment the fraudulent payment data into groups
anyway. By creating the payment types beforehand, simpler models were more likely to
be formed.

3. Creating Training, Testing, and Validation Subsets

A procedure of using training, testing, and validation data sets was used throughout the
model building process to reduce the likelihood of overfitting models. Overfitting has
several harmful side effects, first of which is poorer performance on unseen data than is
expected from the training error rates [24]. Additionally, it also has the effect of selecting
a model that includes extra variables or weights that are spurious. Therefore, not only is
the model less efficient, but it also identifies the wrong patterns in the data. If our
objective is to find the best model that truly represents the patterns in the data, great care
should be taken to avoid overfit.

The common practice of using both a training data set to build a model and a testing data
set to assess the model accuracy reduces the likelihood of overfit. However, the data
mining process is usually iterative, including the training/testing cycle. The testing data
set provides an indication of how well the model will perform on unseen data. But after
several iterations of training and testing, the testing data set ultimately guides the
selection of candidate inputs, algorithm parameters, and “good” models. Therefore, the
testing data set ceases to be independent and becomes an integral part of the model itself.
To guard against this effect, a third (validation) data set is used to assess model quality
(only once) at the end of the training/testing cycles. Before dividing the data into training,
testing, and validation sets, there were three problems to overcome specific to the data set
used in this application.

 4

Data Problem 1. The first difficulty, common in fraud detection problems, was the
small number of labeled fraud payments or transactions available for modeling. The
difficulty was particularly acute here with our desire to have three data subsets for each
model (training, testing, and validation). However, with precious few known fraudulent
payments available, keeping any of them out of training data meant that patterns of
fraudulent payment behavior may have been withheld from the models, and therefore
missed once the models were deployed. To overcome this data problem, the authors used
cross-validation. In cross-validation, data are split into training, testing, and sometimes
validation data sets multiple times, so that each fraud payment is included in each of the
data sets. The number of payments used in the training set can include all the payments
except one, keeping the unused payment for testing, and repeat the splitting until each
payment has been excluded from the training set (included in the testing set) one time.
However, because thousands of payments were used in training our models, this was
deemed too computationally expensive. Most of the benefit of cross-validation can be
achieved from a much smaller number of cross-validation folds, and for this project, it
was decided that 11 subsets would be sufficient.

Data Problem 2. A second problem related to the assumption of independence of
database rows—individual payments—to one another. Typically, the splitting of data into
training, testing, and validation subsets, is done randomly. However, this procedure
assumes independence between rows (payments) in the data. Upon further examination, it
became clear that the modeling variables that were a part of the payments tended to be
correlated within each payee, because payees tend to invoice for work that is similar from
payment to payment. For example, a telephone company may have a similarly sized
invoice for long distance service each month. If some payments from a payee are
included in both the training and testing subsets, testing results will be unrealistically
optimistic. This occurs because the same pattern or a very similar pattern will exist for
the same payee in both the training data (which is used to create a model) and the testing
data (which is used to assess the model). When the model is deployed, most of the payees
will not have been seen during training; the purpose of the model is to generalize
payment patterns, not profile individual payees.

The solution was not only to select payees randomly and to include each in only one of
the data sets (training, testing, or validation), but also to keep together all the fraudulent
payments associated with each payee during the split. For example, if XYZ Corporation
was chosen to be included in the testing data, all other payments made to XYZ
Corporation were also included in the testing data.

Data Problem 3. A third problem resulted from the lack of adjudicated non-fraudulent
payments in the general population. These payments may have been improper or non-
fraudulent, and this label was unknown when collected in the database. It was assumed
for the purposes of modeling, however, that they were non-fraudulent because this was

 5

far more likely to be true. Additionally, for small data sets, it was unlikely that any of the
payments would have been labeled incorrectly as non-fraudulent when they were actually
fraudulent. However, for larger data sets, perhaps over 100,000 payments, the likelihood
of having mislabeled payments included in the training or testing sets was much higher.
The modeling classifiers could become confused if too many mislabeled payments are
included. If the mislabeled payments happened to correspond to patterns of fraud, these
payments may be dismissed erroneously in an effort to reduce false alarms.

To compensate for this effect, training data sets of approximately 4,000 payments each
(compared to a population of 1.4 million) would keep the likelihood of mislabeled
payments sufficiently small so that training would not be negatively effected. The testing
data sets were selected to have 2,000 payments from the population. This split of training
and testing (2/3, 1/3) is common among machine learning community. By keeping the
data sets small, the time needed to train and test models was also reduced significantly. A
much larger 125,000-payment data set was used for model validation. The general (non-
fraudulent payment) population was split into the 11 training and testing sets randomly
based on the above mention criteria. For validation data, a single set of 125,000 payments
was randomly selected from the population. Additional considerations were given to the
non-fraudulent payment population for generating diversity, but will not be discussed in
depth here. For a more detailed description of the process, see Abbott, et al [25].

Known fraud data, with the four type labels (A, B, C, and D), were split following a
different procedure. For types A, B, and C, all payments associated with one payee were
selected randomly for testing data, all payments associated with a random payee were
selected for validation data, and all the payments associated with the remaining payees
were put into the training data. In this way, we included as many patterns in the training
data as possible for each split. For type D, because so few payees were available, the
payments were split randomly between training and testing data sets, and another payee
was held out for validation. Then known fraud splits were combined with the non-
fraudulent payment data in each of the 11 splits. We must note that the validation data set
was the same for each of the 11 splits, while the fraudulent payment data sets were not
and contained fraudulent payments not included in the respective training or testing sets.

4. Criteria for Scoring Models

A superset of over 100 models was developed using SPSS, Inc. Clementine as the data
mining toolset. The algorithms available for modeling in Clementine are neural networks,
decision trees, rule induction, and association rules. Multiple algorithms were used on all
11 data sets to develop the models. Models were trained on the training data set and
tested on the corresponding testing data set. All of the models were scored with respect to
sensitivity and false alarm rate on the training and testing data. To rank the models
percentages for the following three areas were calculated:

 6

1) Fraudulent payment Sensitivity: the percentage of fraudulent payments correctly
called fraud from the known fraud population. Sensitivity predicts the likelihood
that we will find fraudulent payments in the general population.

2) False Alarm Rate: the percentage of non-fraudulent payments incorrectly called
fraudulent from the general population.

3) True Alarm Rate: the percentage of fraudulent payments predicted as fraudulent
from the entire population of payments predicted as fraudulent. True alarm rate
predicts the density of fraudulent payments that will populate the list of fraudulent
payment predictions.

5. Experiments and Results

In this section, we describe a series of experiments that were performed to empirically
validate our hypotheses. These experiments involved generation of four model ensemble.
The first combination was generated to represent the ensemble generated from models
that used the same algorithm on many sample data. In this case the selected models were
the best neural network models that were produced using 10 sample sets. The second
model combination is a representative of the ensemble generated from models that used
the same sample data with various algorithms. Eleven best models generated for a sample
were selected for this model ensemble. The third and fourth model ensembles represent
variations of our approach which many sample data and algorithms are used to generate
the candidate models. The results of these four model ensemble are contrasted with
respect to target class sensitivity and false alarm rate.

The following section reviews the criteria for evaluating the generated models and
creating the above mentioned model ensembles. Finally the results from each of the
model selection approaches are compared against each other.

5.1 Evaluating Models to Be Included in the Ensembles

Evaluation of models to be included in the ensembles used a weighting system to
combine the testing and validation results. The weights applied to testing scores and
validation scores were 30% for testing scores and 70% for validation scores. Scores for
testing and validation results were then added together to produce an overall score and
the overall score of a model was then ranked. The models selected for a given ensemble
were selected based on performance and other criteria described below. In order to
perform a fair comparison the final result of all the ensembles were generated using the
same criterion, a simple vote of the outputs.

Any number of votes could be required to call a payment suspicious. After a brief
investigation, it was determined that a majority vote provided the best tradeoff. Our
ultimate goal was to minimize the false alarms (non-fraudulent payments that were
flagged by the models) and maximize sensitivity (known fraudulent payments that were

 7

flagged by the models). The final decision was based on the majority vote; if a majority
of the models in the ensemble classified a payment as "suspicious," that payment was
labeled as "suspicious" and a candidate for further investigation.

Model Ensemble 1: Using the same algorithm

For generating this model ensemble the selected models were the best neural network
models that were produced using 10 sample sets. These models were compared against
other neural network models generated for the same sample and were selected based on
their combined best score of both sensitivity and false alarm rate. With 10 models in this
model ensemble, a vote of five or more meant the payment is suspicious.

Figure 1 shows the model sensitivity of all 10 models and the combination on the
validation data set. Note that the combination was much better than average, and the best
model overall. This behavior is typical in voting combinations [19].

Sensitiv ity for 10 NN Models and ensemble 1 for
validation data set

0.00%
20.00%
40.00%
60.00%
80.00%

100.00%

1 2 3 4 5 6 7 8 9 10

en
se

mble
 1

Model num ber

Se
ns

iti
vi

ty

Figure 1: Model Sensitivity Comparison

In Figure 2, the false alarm performance is shown. As with sensitivity, the combination
model had a much lower score than the average model, though model 2 had the overall
lowest false alarm rate. It is clear, however, that any positive, non-zero weighting of
sensitivity and false alarms results in the combination having the best score overall. For
example, Figure 3 shows an equal weighting between sensitivity and false alarms.

False Alarm Rate for 10 NN models and
Combination for Validation Data Set

0.00%
0.20%
0.40%
0.60%
0.80%
1.00%
1.20%
1.40%
1.60%

1 2 3 4 5 6 7 8 9 10

en
se

mble
 1

Model Number

Fa
ls

e
A

la
rm

Figure 2: False Alarm Rate Comparison

 8

W e ig h t e d S u m o f S e n s i t iv i t y a n d F a ls e A la r m s f o r
1 0 M o d e ls a n d C o m b in a t io n (L a r g e r i s B e t t e r)

8 . 0
7 . 3 7 . 4

6 . 6
5 . 8

7 . 5

9 . 2

7 . 7

1 . 5
2 . 6

9 . 5

0 . 0
1 . 0
2 . 0
3 . 0
4 . 0
5 . 0
6 . 0
7 . 0
8 . 0
9 . 0

1 0 . 0

1 2 3 4 5 6 7 8 9 10

Com
bin

ed

M o d e l N u m b e r
To

ta
l S

co
re

Figure 3: Total Weighted Score Comparison

Model Ensemble 2: Using the same sample

For generating this model ensemble one of the sample sets was randomly selected. Then
eleven best models generated for that sample were selected to be included in the model
ensemble. These models were selected based on their combined best score of both
sensitivity and false alarm rate compared to other models generated using this sample.
Table 1 lists the algorithms used in this model ensemble.

Tab1e 1: Algorithms Used to Create Models Included in Model Ensemble 2.

Model Number Algorithm Type
1 Decision tree
2 Neural Network
3 Decision tree
4 Neural Network
5 Neural Network
6 Neural Network
7 Decision tree
8 Decision tree
9 Rule based

10 Rule based
11 Decision tree

Figure 4 shows the model sensitivity of all 11 models and the combination on the
validation data set. Note that the combination was much better than average, and the best
model overall. As mentioned before this behavior is typical in voting combinations. In
Figure 5, the false alarm performance is shown. Although four of the models produced
lower false alarms, the combination model had a much lower score than the average and
any positive, non-zero weighting of sensitivity and false alarms results in the combination
having the best score overall. For example, Figure 6 shows an equal weighting between
sensitivity and false alarms.

 9

Model Sensitivity for 11 models using the same
sample and Combination

0.00%
20.00%
40.00%
60.00%
80.00%

100.00%

1 2 3 4 5 6 7 8 9 10 11

en
se

mble
 2

 Model Number

 S
en

si
tiv

ity

Figure 4: Model Sensitivity Comparison

False Alarm Rate for 11 Models using the
Same Sample and Combination

0.00%
0.20%
0.40%
0.60%
0.80%
1.00%
1.20%
1.40%

Model Number
Figure 5: False Alarm Rate Comparison

Figure 6: Total Weighted Score Comparison

Weighted Sum of Sensitivity and False Alarms for
11 Models and Combination (Larger is Better)

6.2 6.7
5.3 6.2 5.7 5.2 4.4

5.8 5.0
3.4 3.6

8.8

0.0
2.0
4.0
6.0
8.0

10.0

Model Number

Model Ensemble 3:

In building this ensemble and for the purposes of majority voting, we choose eleven best
models among all the generated models (over 100). The models were chosen based on the
following criteria:
1) Overall performance of model: Determined by a model's weighted and ranked score.

 10

2) Algorithm Diversity: For example, we did not want all the final models to be neural
networks.

3) Sample Split Representation (Modeler Diversity): To decrease variation and bias of
results, we made sure that as many of the samples and modelers were represented as
possible.

With 11 models in the final ensemble, a majority vote meant that six or more models
must flag the payment as suspicious to label it suspicious. Table 2 lists the algorithms
used in this model ensemble.

Tab1e 2: Algorithms Used to Create Models Included in Model Ensemble 3.

Model Number Algorithm Type
1 Neural Network
2 Decision tree
3 Neural Network
4 Decision tree
5 Decision tree
6 Decision tree
7 Rule based
8 Neural Network
9 Neural Network

10 Neural Network
11 Rule based

Figure 7 shows the model sensitivity of all 11 models and the combination on the
validation data set. Note that the combination was again much better than average, and
nearly the best model overall (model 10 had slightly higher sensitivity).

 Model Sensitivity for 11 Models and Combination
 for Validation Data (Larger is Better)

0.00%
20.00%
40.00%
60.00%
80.00%

100.00%

1 2 3 4 5 6 7 8 9 10 11

Com
bin

ed

Model Number

 M
od

el
 S

en
si

tiv
ity

Figure 7: Model Sensitivity Comparison

Figure 8 shows the false alarm performance. As with sensitivity, the combination model
had a much lower score than the average model, though model 6 had the overall lowest
false alarm rate. Again it can be seen that any positive, non-zero weighting of sensitivity
and false alarms results in the combination having the best score overall. Figure 9 shows
an equal weighting between sensitivity and false alarms.

 11

Normalized False Alarm Rate for 11 Models and Combination
for Validation Data (Smaller is Better)

1.2

2.1

1.2 0.8 0.9 1.2 1.3
0.5

1.2
0.4

0.3

5.0

0.0

1.0

2.0

3.0

4.0

5.0

1 2 3 4 5 6 7 8 9 10 11

Com
bin

ed

Model Number
N

or
m

al
iz

ed
 F

al
se

 A
la

rm
 R

at
e

Figure 8: False Alarm Rate Comparison

Weighted Sum of Sensitivity and False Alarms for

11 Models and Combination (Larger is Better)

6.2
7.3

5.4
7.3

5.9
7.6 7.1 6.9 7.0

8.8

1.4

9.5

0.0
2.0
4.0
6.0
8.0

10.0

Model Number

Figure 9: Total Weighted Score Comparison

Model Ensemble 4

In this strategy the models were selected among the entire generated model set according
to how well they performed on the validation data set. The selection was done based on
the following criteria:

(i) The two models that produced the lowest false alarm rate for classifying fraud type
A.

(ii) The two models that produced the lowest false alarm rate for classifying fraud type
B.

(iii) The two models that produced the lowest false alarm rate for classifying fraud type
C.

(iv) The two models that produced the lowest false alarm rate for classifying fraud type
D.

(v) The two models that produced the lowest overall false alarm rate.
(vi) The two models that produced the highest fraud sensitivity rate.

In this selection process, a model can be chosen for up to two criteria. This selection
process resulted in ten models (two of the models were among the best for two of the

 12

criteria). In this model ensemble, the selected model only votes for those cases on which
it performs best. For example, a model that was selected based on its performance for
type C will only vote for classification of a payment as type C. However, the models that
produced the lowest false alarm and the highest fraud sensitivity were involved in the
selection of all types of fraudulent classes. Thus, at any time six models are used to
decide on a class of a payment. Again as before, the majority voting was used to label a
payment as suspicious. Since at any given time only six models were used to vote on the
labeling of a payment, a payment's label would be improper if four or more models flag it
as improper.

Table 3 lists the algorithms used for developing the selected models for the given criteria.
The final ensemble included four neural networks, five decision trees, and one rule set.

Tab1e 3: Algorithms Used to Create Models Included in Model Ensemble 4.

Model number Criterion Used Algorithm Type
1 1 and 4 Rule induction
2 1 and 2 Decision tree
3 2 Decision tree
4 3 Neural Network
5 3 Neural Network
6 4 Decision tree
7 5 Decision tree
8 5 Neural Network
9 6 Decision tree

10 6 Neural Network

Figure 10, shows the false alarm performance of all 10 models and ensemble 4 on the
validation data set. Again, the combination had a much lower score than the average
model, and nearly the best overall (model 2 had slightly lower false alarm rate). In Figure
11, the model sensitivity is shown. Although the combination was much better than
average, its performance was not comparable to many of the models. This could be the
cause of selecting models that perform well only for a given case. However, once more it
could be seen that any positive, non-zero weighting of sensitivity and false alarms results
in the combination having the best score overall. For example, Figure 12 shows an equal
weighting between sensitivity and false alarms. It can be seen that the combination had
the highest weighted score.

 13

Normalized False Alarm Rate for 10 Models and Combination
for Validation Data (Smaller is Better)

5.0

0.3

2.0
1.2 1.2

2.1

0.8 0.5

4.5

1.2 0.4

0.0
1.0
2.0
3.0
4.0
5.0

1 2 3 4 5 6 7 8 9 10

Com
bin

ed

Model Number

N
or

m
al

iz
ed

 F
al

se
 A

la
rm

R

at
e

Figure 10: False Alarm Rate Comparison

Normalized Model Sensitivity for 10 Models and Combination
 for Validation Data (Larger is Better)

1.0

2.7

4.7

2.1
1.2

4.3

2.9
2.3

5.0 5.0 4.1

0.0
1.0
2.0
3.0
4.0
5.0

1 2 3 4 5 6 7 8 9 10

Com
bin

ed

Model Number

N
or

m
al

iz
ed

 M
od

el

Se
ns

iti
vi

ty

Figure 121: Model Sensitivity Comparison

W eig h ted S u m o f S en s itiv ity an d F a lse A la rm s

fo r
10 M o d e ls an d C o m b in a tio n (L arg er is B e tte r)

1 .4

7 .6 7 .7

6 .2
5 .4

7 .3 7 .3 7 .0

5 .4

8 .8 8 .8

0 .0
1 .0
2 .0
3 .0
4 .0
5 .0
6 .0
7 .0
8 .0
9 .0

10 .0

M o d el N u m b er

Figure 12: Total Weighted Score Comparison

5.2 Comparison of Model Ensemble Approaches

In this section, the various model selection approaches are compared with respect to fraud
sensitivity and false alarm rates. Fraud sensitivity and false alarm rate form two factors
for evaluation of the models. As reviewed earlier, in the fraud analysis case researched by
the authors, the challenge is to minimize false alarms while not sacrificing model

 14

sensitivity. Ensembles that maximize one factor at the expense of the other are sub
optimal to ensembles that are capable of improving on two factors simultaneously.

All scores for the various selection approaches were generated by running the models
against the same validation data set. Figure 13 displays a comparison of the normalized
false alarm scores across the model selection approaches. In Figure 13, it can be seen that
Ensemble 2 (using multiple algorithms on the same sample) generates the highest false
alarm rate (roughly 0.30%) from among the model ensembles. This relatively poor
showing of ensemble 2 may be attributable to the inclusion of two models (10 and 11 in
Figure 5) that may have been left out of the ensemble, after all the target of 11 models is
an arbitrary target (NOTE: However, this did not improve the performance). In fact,
when model 10 and 11 are excluded from Ensemble 2, the resultant false alarm rate and
sensitivity are 0.42% and 87.6% respectively. This act of revisiting model inclusions in a
model ensemble represents after-the-fact tuning of an ensemble, which, is a luxury in a
mission critical analysis of fraud. Ensembles 3 and 4 represent the lowest false alarm
rates (below 0.10% for both ensembles).

Figure 14 displays a comparison of model sensitivities. The higher the sensitivity the
better the ensemble performance. Figure 14 displays that Ensemble 4 is not capable of
maximizing its performance on two factors simultaneously, an ensemble trait required by
the authors to satisfactorily handle the fraud analysis problem. Ensemble 3 has the
highest sensitivity rate of the ensembles. This trait demonstrates that Ensemble 3 can
maximize two factors simultaneously.

False Alarm Rate for the Model Ensembles
(lower is better)

0.00%
0.05%
0.10%
0.15%
0.20%
0.25%
0.30%
0.35%

1 2 3 4
Model Ensemble

Fa
ls

e
A

la
rm

 R
at

e

Figure 13: False Alarm Rate Comparison

 15

Sensitivity for the Model ensembles (Higher is
better)

70.00%

80.00%

90.00%

100.00%

1 2 3 4

Model ensemble
Se

ns
iti

vi
ty

 Figure 14: Model Sensitivity Comparison

Figure 15 displays the weighted combination of sensitivity and false alarm scores.
Ensemble 3 and 4 have the highest weighted combined scores. This result supports the
notion that increased diversity of the models improves the quality of the decisions of the
committee.

Normalized Weighted sum of Sensitivity & False
Alarm

0.0
2.0
4.0
6.0
8.0

10.0

1 2 3 4

Model Number

To
ta

l S
co

re

Figure 15: Total Weighted Score Comparison

Ensemble 3 can be seen as an approach that is designed to maximize the diversity of the
models, both based on the type of algorithm and the training data sets. Further, Ensemble
3, with little handcrafting, generated results that maximize both factors simultaneously.

6. Discussion

There is strength in diversity. This is an adage that has found support in the literature
reviewed in this paper and in the results presented in this paper. However, there are
multiple sources of diversity. In the author’s case, ensemble diversity has two main
sources, namely sample diversity and algorithm diversity.

 16

It has been demonstrated in prior research that two strategies for improving classification
and prediction decisions are to combine multiple algorithms in a single sample or to
combine multiple samples with a single algorithm type. The authors’ research has
extended the existing research by both combining models and samples.

This approach is demonstrated in the results listed here to provide measurable
improvements over the existing combination approaches. The combination of algorithms
and samples adds a further benefit in that it minimizes the risks of poor sample selection.
The selection of a poor sample is a real problem that can be encountered especially given
small sample sizes or low levels of representation of target classes. Data paucity is a
challenge that faces fraud analysts; therefore the potential for generating a poor sample is
not negligible.

The combination of algorithms and samples further avoids the necessity to continuously
“handcraft” results by iteratively adding and dropping models until a result is adequate.
With a fixed set of models, trained over a fixed set of samples, it is expected that the
combination of models and samples is an optimal approach to improve classification
decisions precisely because it is the combination approach best able to maximize the
diversity of the individual models selected.

The authors note that further research needs be pursued in two areas. First the data set of
trained models needs to be increased. This would allow for the collection of multiple
ensembles within each type of ensemble explored in this research. Second, the authors
believe that the voting mechanisms themselves could be manipulated to test the optimal
decision rule for improving classification decisions.

7. References

[1] Merz, C. J. (1999) "Using Correspondence Analysis to Combine Classifiers" Machine

Learning Journal.
[2] Elder, J.F., and Pregibon, D. (1995). A Statistical Perspective on Knowledge Discovery in

Databases. Advances in Knowledge Discovery and Data Mining. U.M. Fayyad, G. Piatetsky-
Shapiro, P. Smyth, and R. Uthurusamy, Editors. AAAI/MIT Press.

[3] Dietterich, T. (1997). Machine-Learning Research: Four Current Directions. AI Magazine.
18(4): 97-136.

[4] Steinberg D. (1997), CART Users Manual, Salford Systems.
[5] Breiman, L. (1996), Bagging predictors. Machine Learning 24: 123-140.
[6] Jain, A.K., R.P.W. Duin, and J. Mao (2000), Statistical Pattern Recognition: A Review. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 22(1): 4-37.
[7] Breiman, L. (1996). Arcing Classifiers. Technical Report, July.
[8] Dietterich, T., (2000). An experimental comparison of three methods for constructing

ensembles of decision trees: Bagging, boosting, and randomization. Machine Learning, 40 (2)
139-158.

[9] Tumer, K. and J. Ghosh (1996), Analysis of Decision Boundaries in Linearly Combined Neural
Classifiers. Pattern Recognition, 28: 341-348.

 17

[10] Perrone, M.P. and L.N. Cooper (1993), When Networks Disagree: Ensemble Methods for
Hybrid Neural Networks. Neural Networks for Speech and Image Processing, R.J. Mammone,
ed., Chapman-Hall.

[11] Jacob, R.A., M. I. Jordan, S. L. Nowlan, G.E. Hinton (1991), Adaptive mixture of local
experts, Neural Computation, vol. 3, No. 1.

[12] Maclin, R. and J. W. Shavlik(1995), Combining the predictions of multiple classifiers: Using
competitive learning to initialize neural networks. In Proceedings of the 14th International
Joint Conference on Artificial Intelligence,.

[13] Krogh, A, and J. Vedelsby (1995), Neural network Ensembles, cross validation, and active
learning. In G. Tesauro, D. Touretzky, and T. Leen, editors, Advances in Neural Information
Processing Systems, volume 7, The MIT Press.

[14] Wolpert, D.H. (1992), Stacked generalization, Neural Networks 5: 241-259.
[15] Optiz, D. W., and R. Maclin (1999), Popular Ensemble Methods: An Empirical Study. Journal

of Artificial Intelligence Research, 11, pp. 169-198.
[16] Bala, J., K. De Jong, J. Huang, H. Vafaie, and H. Wechsler (1995), Hybrid Learning Using

Genetic Algorithms and Decision Trees for Pattern Classification. Proceedings of the
International Joint Conference on Artificial Intelligence, Montreal, P.Q., Canada.

[17] Bauer, E., Kohavi R. (1998), An Empirical Comparison of Voting Classification Algorithms:
Bagging, Boosting, and Variants. Machine Learning, 36(1/2) July/August 1999:105-139.

[18] Elder, J. F. IV, D.W. Abbott (1997), Fusing Diverse Algorithms. 29th Symposium on the
Interface, Houston, TX, May 14-17.

[19] Abbott, D.W. (1999), Combining Models to Improve Classifier Accuracy and Robustness. 2nd
International Conference on Information Fusion —Fusion99, San Jose, CA, July 6.

[20] Tresp, V., and M. Tanguchi (1995), Combining estimators using non-constant weighting
functions. In G. Tesauro, D. Touretzky, and T. Leen, editors, Advances in Neural Information
Processing Systems, volume 7, The MIT Press.

[21] Lee, S. S. and J.F. Elder (1997), Bundling Heterogeneous Classifiers with Advisor
Perceptrons, White Paper, University of Idaho and Elder Research.

[22] Fawcett, T., and F. Provost (1997). Adaptive Fraud Detection. Data Mining and Knowledge
Discovery, Kluwer Academic Publishers, 1(3), 291-31.

[23] Jensen, D., (1995). Prospective Assessment of AI Technologies for Fraud Detection: A Case
Study. Working Papers of the AAAI-97 Workshop on Artificial Intelligence Approaches to
Fraud Detection and Risk Management, July.

[24] Jensen, D., and P.R. Cohen (2000). Multiple Comparisons in Induction Algorithms. Machine
Learning Journal, 38(3), 1-30.

[25] Abbott, D.W., Vafaie H., Hutchins, M. and Riney, D. (2000), Improper Payment Detection in
Department of Defense Financial Transactions, Federal Data Mining Symposium,
Washington, DC, March 28-29.

 18

http://www.wkap.nl/issuetoc.htm/0885-6125+38+3+2000
http://www.wkap.nl/issuetoc.htm/0885-6125+38+3+2000

	1. Introduction
	2. Problem Description
	3. Creating Training, Testing, and Validation Subsets
	5. Experiments and Results

	5.1 Evaluating Models to Be Included in the Ensembles
	Model Ensemble 1: Using the same algorithm
	Model Ensemble 2: Using the same sample
	Model Number
	Model Number
	Model Ensemble 4

	6. Discussion
	7. References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts false
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

