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Multiple approaches have been developed for improving predictive performance of a system by creating 
and combining various learned models. There are two main approaches to creating model ensembles. 
The first is to create a set of learned models by applying an algorithm repeatedly to different training 
sample data, the second applies various learning algorithms to the same sample data. The predictions of 
the models are then combined according to a voting scheme. This paper presents a method for 
combining models that were developed using numerous samples, modeling algorithms, and modelers 
and compares it with the alternate approaches. The presented results are based on findings from an 
ongoing operational data mining initiative with respect to selecting a model set that is best able to meet 
defined goals from among trained models. The operational goals to be attained in this initiative are to 
deploy data mining model(s) that maximizes specificity with minimal negative impact to sensitivity. The 
results of the model combination methods are evaluated with respect to sensitivity and false alarm rates 
and are then compared against other approaches.  
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1.  Introduction   

Combining models is not a new concept for the statistical pattern recognition, machine 
learning, or engineering communities, though in recent years there has been an explosion 
of research exploring creative new ways to combine models. Currently, there are two 
main approaches to model combination. The first approach generates a set of learned 
models by applying an algorithm repeatedly to different samples of the training data. The 
second approach applies different learning algorithms to the same sample of data to 
generate a set of learned models [1]. The predictions of the models are then combined 
according to a voting scheme. The diverse research has also produced a proliferation of 
terminology used to describe combining models developed using the same algorithm. 
Elder and Pregibon [2] used the term Blending to describe “the ancient statistical adage 
that 'in many counselors there is safety'”. The same concept has been described as 
Ensemble of Classifiers by Dietterich [3], Committee of Experts by Steinberg [4], and 
Perturb and Combine (P&C) by Breiman [5]. Jain, Duin, and Mao [6] call the methods 
merely Combiners. However, the concept of combining models is actually quite simple: 
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train several models from the same data set, or from samples of the same data set, and 
combine the output predictions, typically by voting for classification problems and 
averaging output values for estimation problems. The reductions in model bias (errors) 
and variance have been shown to be significant.  
 
For decision trees, Breiman [7] demonstrates bagging and ARCing improve single CART 
models on 11 machine learning datasets in every case. Bagging merely creates multiple 
classifiers from bootstrap samples of the training data, and then combines the decisions of 
the individual classifiers via voting or averaging. Additionally, he documents that 
ARCing, using no special data preprocessing or classifier manipulation (just read the data 
and create the model), often achieves the performance of handcrafted classifiers that were 
tailored specifically for the data.  
 
Boosting, like Bagging, changes the training datasets by emphasizing some records over 
others, though Boosting puts more weight (directly) on records that the classifier has 
misclassified. The final decision is produced by a weighted sum of the classifiers, where 
the weighting is based on the performance of the individual classifiers. In other research, 
Dietterich [8] shows that bagging, boosting, or another method called randomization 
always beats a C4.5 tree.  
 
There is also a large body of literature describing model ensembles using neural 
networks, Tumer and Ghosh [9] showed combining neural network classifiers with 
identically distributed error variance reduces the error variance linearly with the number 
of classifiers. Perrone and Cooper [10] showed that when combining neural networks 
linearly, the combined model will lower mean squared error more than any of the 
individual models, although this is only true for very restrictive circumstance: if there is 
independence of the error correlation matrix. In both of these studies, however, restrictive 
assumptions reduce the applicability to real problems, yet they show the power of the 
combination process nevertheless. Other researchers have also shown the advantage of 
combining the outputs of many neural networks, including using Bagging and Boosting  
(e.g.  [11], [12], [13], [14], and  [15]).  
 
Intuitively, it seems that producing relatively uncorrelated output predictions in the 
models to be combined is necessary to reduce error rates. If output predictions are highly 
correlated, little reduction in error is possible, as the "committee of experts" have no 
diversity from which to draw, and therefore no means to overcome erroneous predictions. 
Decision trees are very unstable in this regard as small perturbations in the training data 
set can produce large differences in the structure (and predictions) of a model [16], i.e., 
decision trees are unstable. Neural networks are sensitive to data used to train the models 
and to the many training parameters and random number seeds that need to be specified 
by the analyst. Indeed, many researchers merely train neural network models changing 
nothing but the random seed for weight initialization and produce significantly different 
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models. Polynomial networks have considerable structural instability, as different data 
sets can produce significantly different models.  
 
There has been some success in combining models across algorithm types. Bauer and 
Kohavi [17] discuss the possibility of combining models across algorithm types, although 
they did not have success. Elder [18] called this approach Bundling and showed that it 
out-performed individual models on average in a direct marketing application. This 
approach also improved performance over a single model when applied to several other 
data sets from the Machine Learning Repository at UC/Irvine [19]. The same conclusion 
was found by Jain et al [6] on a digit classification problem. The work by Tresp and 
Tanguchi [20] and Merz [1] are other examples of this approach.  
 
It has been shown that a good model ensemble is one where the individual models are 
both accurate and make their errors on different parts of the input [15]. So a case can be 
made for combining models across algorithm families as a means of providing 
uncorrelated output estimates because of the difference in basis functions used to build 
the model. In fact, the manner in which the combination of models are assembled (voting, 
averaging, and two types of advisor perceptrons) is not as important as performing some 
kind of combination [21]. 
 
Regarding the bias – variance tradeoff, ensemble methods like Bagging and Bundling are 
primarily variance reduction methods, that is, they reduce the likelihood of deploying a 
poor model by reducing the error variance when evaluating models on out-of-sample 
data. This does not mean that they cannot reduce model bias, and they do indeed, on 
average, reduce model bias, but they do not necessarily reduce bias. Methods that operate 
more directly on the modeling errors themselves, such as Boosting and ARCing, are more 
effective at reducing model bias.  
  
The previous work show that by introducing diversity, either in terms of the various 
algorithms used or the sample training data sets, the overall performance is improved. 
Our hypothesis is that by combining the two criteria, i.e., generating model ensemble 
form models that were generated using different algorithms and training data set, the 
maximum diversity is allowed in the ensemble and therefore, the results should further be 
improved. The following section presents the real world problem domain, fraud 
detection, we selected for our initial studies. The fraud detection problem has several 
common issues which will be described in detail. 
 
2.  Problem Description  
 
The detection of illegal, improper, or unusual transactions is a constant challenge for any 
business. Both the private and public sectors have worked extensively to detect fraud in 
their systems. The extent of fraud, while varying from application to application, can be 
quite large. Cellular phone fraud alone costs the industry hundreds of millions of dollars 

 3



per year [22], and fraudulent transfers of illegally obtained funds (money laundering) are 
estimated to be as much as $300 billion annually [23].  
 
For the current research, the problem included establishing a data set of known fraudulent 
payments, a target population of over one million non-fraudulent payments, and a method 
by which to leverage the known fraud cases in the training of detection models. As is 
typical in fraud detection, the set of known cases was very small relative to the number of 
non-fraud examples. Thus, the authors had to devise methods to reduce false alarms 
without drastically compromising the sensitivity of trained models.  
 
Rather than using a single fraud/not-fraud binary label for the output variable, four 
fraudulent payment types, called types A, B, C, and D, was identified as comprising the 
different styles of payments in the known fraud data. Although separating the known 
fraudulent payments into types was not essential to the modeling process, the authors 
believed that the additional information would aid classifiers in identifying suspicious 
payments, and reduce false alarms. The primary reason for this belief was that the types 
of known fraudulent payments had significantly different behaviors, which would cause a 
classification algorithm to try to segment the fraudulent payment data into groups 
anyway. By creating the payment types beforehand, simpler models were more likely to 
be formed. 
 
3.  Creating Training, Testing, and Validation Subsets 
 
A procedure of using training, testing, and validation data sets was used throughout the 
model building process to reduce the likelihood of overfitting models. Overfitting has 
several harmful side effects, first of which is poorer performance on unseen data than is 
expected from the training error rates [24]. Additionally, it also has the effect of selecting 
a model that includes extra variables or weights that are spurious. Therefore, not only is 
the model less efficient, but it also identifies the wrong patterns in the data. If our 
objective is to find the best model that truly represents the patterns in the data, great care 
should be taken to avoid overfit. 
 
The common practice of using both a training data set to build a model and a testing data 
set to assess the model accuracy reduces the likelihood of overfit. However, the data 
mining process is usually iterative, including the training/testing cycle. The testing data 
set provides an indication of how well the model will perform on unseen data. But after 
several iterations of training and testing, the testing data set ultimately guides the 
selection of candidate inputs, algorithm parameters, and “good” models. Therefore, the 
testing data set ceases to be independent and becomes an integral part of the model itself. 
To guard against this effect, a third (validation) data set is used to assess model quality 
(only once) at the end of the training/testing cycles. Before dividing the data into training, 
testing, and validation sets, there were three problems to overcome specific to the data set 
used in this application. 
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Data Problem 1.  The first difficulty, common in fraud detection problems, was the 
small number of labeled fraud payments or transactions available for modeling. The 
difficulty was particularly acute here with our desire to have three data subsets for each 
model (training, testing, and validation). However, with precious few known fraudulent 
payments available, keeping any of them out of training data meant that patterns of 
fraudulent payment behavior may have been withheld from the models, and therefore 
missed once the models were deployed. To overcome this data problem, the authors used 
cross-validation. In cross-validation, data are split into training, testing, and sometimes 
validation data sets multiple times, so that each fraud payment is included in each of the 
data sets.  The number of payments used in the training set can include all the payments 
except one, keeping the unused payment for testing, and repeat the splitting until each 
payment has been excluded from the training set (included in the testing set) one time. 
However, because thousands of payments were used in training our models, this was 
deemed too computationally expensive. Most of the benefit of cross-validation can be 
achieved from a much smaller number of cross-validation folds, and for this project, it 
was decided that 11 subsets would be sufficient.  
 
Data Problem 2. A second problem related to the assumption of independence of 
database rows—individual payments—to one another. Typically, the splitting of data into 
training, testing, and validation subsets, is done randomly. However, this procedure 
assumes independence between rows (payments) in the data. Upon further examination, it 
became clear that the modeling variables that were a part of the payments tended to be 
correlated within each payee, because payees tend to invoice for work that is similar from 
payment to payment. For example, a telephone company may have a similarly sized 
invoice for long distance service each month. If some payments from a payee are 
included in both the training and testing subsets, testing results will be unrealistically 
optimistic. This occurs because the same pattern or a very similar pattern will exist for 
the same payee in both the training data (which is used to create a model) and the testing 
data (which is used to assess the model). When the model is deployed, most of the payees 
will not have been seen during training; the purpose of the model is to generalize 
payment patterns, not profile individual payees. 
 
The solution was not only to select payees randomly and to include each in only one of 
the data sets (training, testing, or validation), but also to keep together all the fraudulent 
payments associated with each payee during the split. For example, if XYZ Corporation 
was chosen to be included in the testing data, all other payments made to XYZ 
Corporation were also included in the testing data.  
 
Data Problem 3. A third problem resulted from the lack of adjudicated non-fraudulent 
payments in the general population. These payments may have been improper or non-
fraudulent, and this label was unknown when collected in the database. It was assumed 
for the purposes of modeling, however, that they were non-fraudulent because this was 
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far more likely to be true. Additionally, for small data sets, it was unlikely that any of the 
payments would have been labeled incorrectly as non-fraudulent when they were actually 
fraudulent. However, for larger data sets, perhaps over 100,000 payments, the likelihood 
of having mislabeled payments included in the training or testing sets was much higher. 
The modeling classifiers could become confused if too many mislabeled payments are 
included. If the mislabeled payments happened to correspond to patterns of fraud, these 
payments may be dismissed erroneously in an effort to reduce false alarms. 
 
To compensate for this effect, training data sets of approximately 4,000 payments each 
(compared to a population of 1.4 million) would keep the likelihood of mislabeled 
payments sufficiently small so that training would not be negatively effected. The testing 
data sets were selected to have 2,000 payments from the population. This split of training 
and testing (2/3, 1/3) is common among machine learning community. By keeping the 
data sets small, the time needed to train and test models was also reduced significantly. A 
much larger 125,000-payment data set was used for model validation. The general (non-
fraudulent payment) population was split into the 11 training and testing sets randomly 
based on the above mention criteria. For validation data, a single set of 125,000 payments 
was randomly selected from the population.  Additional considerations were given to the 
non-fraudulent payment population for generating diversity, but will not be discussed in 
depth here. For a more detailed description of the process, see Abbott, et al [25]. 
 
Known fraud data, with the four type labels (A, B, C, and D), were split following a 
different procedure. For types A, B, and C, all payments associated with one payee were 
selected randomly for testing data, all payments associated with a random payee were 
selected for validation data, and all the payments associated with the remaining payees 
were put into the training data. In this way, we included as many patterns in the training 
data as possible for each split. For type D, because so few payees were available, the 
payments were split randomly between training and testing data sets, and another payee 
was held out for validation. Then known fraud splits were combined with the non-
fraudulent payment data in each of the 11 splits. We must note that the validation data set 
was the same for each of the 11 splits, while the fraudulent payment data sets were not 
and contained fraudulent payments not included in the respective training or testing sets. 
 
4.  Criteria for Scoring Models  
 
A superset of over 100 models was developed using SPSS, Inc. Clementine as the data 
mining toolset. The algorithms available for modeling in Clementine are neural networks, 
decision trees, rule induction, and association rules. Multiple algorithms were used on all 
11 data sets to develop the models. Models were trained on the training data set and 
tested on the corresponding testing data set. All of the models were scored with respect to 
sensitivity and false alarm rate on the training and testing data. To rank the models 
percentages for the following three areas were calculated: 
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1) Fraudulent payment Sensitivity: the percentage of fraudulent payments correctly 
called fraud from the known fraud population.  Sensitivity predicts the likelihood 
that we will find fraudulent payments in the general population.  

2) False Alarm Rate: the percentage of non-fraudulent payments incorrectly called 
fraudulent from the general population. 

3) True Alarm Rate: the percentage of fraudulent payments predicted as fraudulent 
from the entire population of payments predicted as fraudulent.  True alarm rate 
predicts the density of fraudulent payments that will populate the list of fraudulent 
payment predictions.  

 
5.  Experiments and Results 
 
In this section, we describe a series of experiments that were performed to empirically 
validate our hypotheses. These experiments involved generation of four model ensemble. 
The first combination was generated to represent the ensemble generated from models 
that used the same algorithm on many sample data. In this case the selected models were 
the best neural network models that were produced using 10 sample sets. The second 
model combination is a representative of the ensemble generated from models that used 
the same sample data with various algorithms. Eleven best models generated for a sample 
were selected for this model ensemble. The third and fourth model ensembles represent 
variations of our approach which many sample data and algorithms are used to generate 
the candidate models. The results of these four model ensemble are contrasted with 
respect to target class sensitivity and false alarm rate. 
 
The following section reviews the criteria for evaluating the generated models and 
creating the above mentioned model ensembles. Finally the results from each of the 
model selection approaches are compared against each other.  
 
5.1  Evaluating Models to Be Included in the Ensembles 
 
Evaluation of models to be included in the ensembles used a weighting system to 
combine the testing and validation results. The weights applied to testing scores and 
validation scores were 30% for testing scores and 70% for validation scores. Scores for 
testing and validation results were then added together to produce an overall score and 
the overall score of a model was then ranked. The models selected for a given ensemble 
were selected based on performance and other criteria described below. In order to 
perform a fair comparison the final result of all the ensembles were generated using the 
same criterion, a simple vote of the outputs.  
 
Any number of votes could be required to call a payment suspicious. After a brief 
investigation, it was determined that a majority vote provided the best tradeoff.  Our 
ultimate goal was to minimize the false alarms (non-fraudulent payments that were 
flagged by the models) and maximize sensitivity (known fraudulent payments that were 
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flagged by the models).  The final decision was based on the majority vote; if a majority 
of the models in the ensemble classified a payment as "suspicious," that payment was 
labeled as "suspicious" and a candidate for further investigation.   
 
Model Ensemble 1: Using the same algorithm  
 
For generating this model ensemble the selected models were the best neural network 
models that were produced using 10 sample sets. These models were compared against 
other neural network models generated for the same sample and were selected based on 
their combined best score of both sensitivity and false alarm rate. With 10 models in this 
model ensemble, a vote of five or more meant the payment is suspicious.  
 
Figure 1 shows the model sensitivity of all 10 models and the combination on the 
validation data set. Note that the combination was much better than average, and the best 
model overall. This behavior is typical in voting combinations [19].  
 

Sensitiv ity for 10 NN Models and ensemble 1 for 
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Figure 1: Model Sensitivity Comparison 

 
In Figure 2, the false alarm performance is shown. As with sensitivity, the combination 
model had a much lower score than the average model, though model 2 had the overall 
lowest false alarm rate. It is clear, however, that any positive, non-zero weighting of 
sensitivity and false alarms results in the combination having the best score overall.  For 
example, Figure 3 shows an equal weighting between sensitivity and false alarms.  
 

False Alarm Rate for 10 NN models and 
Combination for Validation Data Set 

0.00%
0.20%
0.40%
0.60%
0.80%
1.00%
1.20%
1.40%
1.60%

1 2 3 4 5 6 7 8 9 10

en
se

mble
 1

Model Number

Fa
ls

e 
A

la
rm

 
Figure 2: False Alarm Rate Comparison 
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Figure 3: Total Weighted Score Comparison 
 

Model Ensemble 2: Using the same sample   

For generating this model ensemble one of the sample sets was randomly selected. Then 
eleven best models generated for that sample were selected to be included in the model 
ensemble. These models were selected based on their combined best score of both 
sensitivity and false alarm rate compared to other models generated using this sample. 
Table 1 lists the algorithms used in this model ensemble. 
 

Tab1e 1: Algorithms Used to Create Models Included in Model Ensemble 2. 
 

Model Number Algorithm Type 
1 Decision tree 
2 Neural Network 
3 Decision tree 
4 Neural Network 
5 Neural Network 
6 Neural Network 
7 Decision tree 
8 Decision tree 
9 Rule based 

10 Rule based 
11 Decision tree 

 
Figure 4 shows the model sensitivity of all 11 models and the combination on the 
validation data set. Note that the combination was much better than average, and the best 
model overall. As mentioned before this behavior is typical in voting combinations. In 
Figure 5, the false alarm performance is shown. Although four of the models produced 
lower false alarms, the combination model had a much lower score than the average and 
any positive, non-zero weighting of sensitivity and false alarms results in the combination 
having the best score overall.  For example, Figure 6 shows an equal weighting between 
sensitivity and false alarms.  
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Figure 4: Model Sensitivity Comparison 

 

False Alarm Rate for 11 Models using the 
Same Sample and Combination 
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Figure 6: Total Weighted Score Comparison 
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Model Ensemble 3: 

In building this ensemble and for the purposes of majority voting, we choose eleven best 
models among all the generated models (over 100). The models were chosen based on the 
following criteria: 
1) Overall performance of model: Determined by a model's weighted and ranked score. 
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2) Algorithm Diversity: For example, we did not want all the final models to be neural 
networks. 

3) Sample Split Representation (Modeler Diversity): To decrease variation and bias of 
results, we made sure that as many of the samples and modelers were represented as 
possible. 

With 11 models in the final ensemble, a majority vote meant that six or more models 
must flag the payment as suspicious to label it suspicious. Table 2 lists the algorithms 
used in this model ensemble. 

 
Tab1e 2: Algorithms Used to Create Models Included in Model Ensemble 3. 

Model Number Algorithm Type 
1 Neural Network 
2 Decision tree 
3 Neural Network 
4 Decision tree 
5 Decision tree 
6 Decision tree 
7 Rule based 
8 Neural Network 
9 Neural Network 

10 Neural Network 
11 Rule based 

 
Figure 7 shows the model sensitivity of all 11 models and the combination on the 
validation data set. Note that the combination was again much better than average, and 
nearly the best model overall (model 10 had slightly higher sensitivity).  
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Figure 7: Model Sensitivity Comparison 

 
Figure 8 shows the false alarm performance. As with sensitivity, the combination model 
had a much lower score than the average model, though model 6 had the overall lowest 
false alarm rate. Again it can be seen that any positive, non-zero weighting of sensitivity 
and false alarms results in the combination having the best score overall. Figure 9 shows 
an equal weighting between sensitivity and false alarms.  
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Normalized False Alarm Rate for 11 Models and Combination
for Validation Data (Smaller is Better)
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Figure 8:  False Alarm Rate Comparison 
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Figure 9: Total Weighted Score Comparison 

 

Model Ensemble 4 

In this strategy the models were selected among the entire generated model set according 
to how well they performed on the validation data set. The selection was done based on 
the following criteria: 
 

(i) The two models that produced the lowest false alarm rate for classifying fraud type 
A. 

(ii) The two models that produced the lowest false alarm rate for classifying fraud type 
B. 

(iii) The two models that produced the lowest false alarm rate for classifying fraud type 
C. 

(iv) The two models that produced the lowest false alarm rate for classifying fraud type 
D. 

(v) The two models that produced the lowest overall false alarm rate. 
(vi) The two models that produced the highest fraud sensitivity rate. 

 
In this selection process, a model can be chosen for up to two criteria. This selection 
process resulted in ten models (two of the models were among the best for two of the 
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criteria). In this model ensemble, the selected model only votes for those cases on which 
it performs best. For example, a model that was selected based on its performance for 
type C will only vote for classification of a payment as type C. However, the models that 
produced the lowest false alarm and the highest fraud sensitivity were involved in the 
selection of all types of fraudulent classes. Thus, at any time six models are used to 
decide on a class of a payment. Again as before, the majority voting was used to label a 
payment as suspicious. Since at any given time only six models were used to vote on the 
labeling of a payment, a payment's label would be improper if four or more models flag it 
as improper. 
 
Table 3 lists the algorithms used for developing the selected models for the given criteria. 
The final ensemble included four neural networks, five decision trees, and one rule set. 
 

Tab1e 3: Algorithms Used to Create Models Included in Model Ensemble 4. 

Model number Criterion Used Algorithm Type 
1 1 and 4 Rule induction 
2 1 and 2 Decision tree 
3 2 Decision tree 
4 3 Neural Network 
5 3 Neural Network 
6 4 Decision tree 
7 5 Decision tree 
8 5 Neural Network 
9 6 Decision tree 

10 6 Neural Network 
 
Figure 10, shows the false alarm performance of all 10 models and ensemble 4 on the 
validation data set. Again, the combination had a much lower score than the average 
model, and nearly the best overall (model 2 had slightly lower false alarm rate). In Figure 
11, the model sensitivity is shown. Although the combination was much better than 
average, its performance was not comparable to many of the models. This could be the 
cause of selecting models that perform well only for a given case. However, once more it 
could be seen that any positive, non-zero weighting of sensitivity and false alarms results 
in the combination having the best score overall.  For example, Figure 12 shows an equal 
weighting between sensitivity and false alarms. It can be seen that the combination had 
the highest weighted score.  
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Figure 10: False Alarm Rate Comparison  
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Figure 121: Model Sensitivity Comparison 
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Figure 12: Total Weighted Score Comparison 

 

5.2  Comparison of Model Ensemble Approaches  

In this section, the various model selection approaches are compared with respect to fraud 
sensitivity and false alarm rates. Fraud sensitivity and false alarm rate form two factors 
for evaluation of the models. As reviewed earlier, in the fraud analysis case researched by 
the authors, the challenge is to minimize false alarms while not sacrificing model 
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sensitivity. Ensembles that maximize one factor at the expense of the other are sub 
optimal to ensembles that are capable of improving on two factors simultaneously.  
 
All scores for the various selection approaches were generated by running the models 
against the same validation data set. Figure 13 displays a comparison of the normalized 
false alarm scores across the model selection approaches. In Figure 13, it can be seen that 
Ensemble 2 (using multiple algorithms on the same sample) generates the highest false 
alarm rate (roughly 0.30%) from among the model ensembles. This relatively poor 
showing of ensemble 2 may be attributable to the inclusion of two models (10 and 11 in 
Figure 5) that may have been left out of the ensemble, after all the target of 11 models is 
an arbitrary target (NOTE: However, this did not improve the performance). In fact, 
when model 10 and 11 are excluded from Ensemble 2, the resultant false alarm rate and 
sensitivity are 0.42% and 87.6% respectively. This act of revisiting model inclusions in a 
model ensemble represents after-the-fact tuning of an ensemble, which, is a luxury in a 
mission critical analysis of fraud. Ensembles 3 and 4 represent the lowest false alarm 
rates (below 0.10% for both ensembles).  
 
Figure 14 displays a comparison of model sensitivities. The higher the sensitivity the 
better the ensemble performance. Figure 14 displays that Ensemble 4 is not capable of 
maximizing its performance on two factors simultaneously, an ensemble trait required by 
the authors to satisfactorily handle the fraud analysis problem. Ensemble 3 has the 
highest sensitivity rate of the ensembles. This trait demonstrates that Ensemble 3 can 
maximize two factors simultaneously.  
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Figure 13: False Alarm Rate Comparison 
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  Figure 14: Model Sensitivity Comparison 

 

Figure 15 displays the weighted combination of sensitivity and false alarm scores. 
Ensemble 3 and 4 have the highest weighted combined scores. This result supports the 
notion that increased diversity of the models improves the quality of the decisions of the 
committee.  
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Figure 15: Total Weighted Score Comparison 

 
Ensemble 3 can be seen as an approach that is designed to maximize the diversity of the 
models, both based on the type of algorithm and the training data sets. Further, Ensemble 
3, with little handcrafting, generated results that maximize both factors simultaneously.  
 
 

6.  Discussion   

There is strength in diversity. This is an adage that has found support in the literature 
reviewed in this paper and in the results presented in this paper. However, there are 
multiple sources of diversity. In the author’s case, ensemble diversity has two main 
sources, namely sample diversity and algorithm diversity.  
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It has been demonstrated in prior research that two strategies for improving classification 
and prediction decisions are to combine multiple algorithms in a single sample or to 
combine multiple samples with a single algorithm type.  The authors’ research has 
extended the existing research by both combining models and samples.  
 
This approach is demonstrated in the results listed here to provide measurable 
improvements over the existing combination approaches. The combination of algorithms 
and samples adds a further benefit in that it minimizes the risks of poor sample selection. 
The selection of a poor sample is a real problem that can be encountered especially given 
small sample sizes or low levels of representation of target classes. Data paucity is a 
challenge that faces fraud analysts; therefore the potential for generating a poor sample is 
not negligible.  
 
The combination of algorithms and samples further avoids the necessity to continuously 
“handcraft” results by iteratively adding and dropping models until a result is adequate. 
With a fixed set of models, trained over a fixed set of samples, it is expected that the 
combination of models and samples is an optimal approach to improve classification 
decisions precisely because it is the combination approach best able to maximize the 
diversity of the individual models selected.  
 
The authors note that further research needs be pursued in two areas. First the data set of 
trained models needs to be increased. This would allow for the collection of multiple 
ensembles within each type of ensemble explored in this research. Second, the authors 
believe that the voting mechanisms themselves could be manipulated to test the optimal 
decision rule for improving classification decisions.  
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