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Abstract
Recent years have shown an explosion in research
related to the combination of predictions from
individual classification or estimation models, and
results have been very promising. By combining
predictions, more robust and accurate models are
almost guaranteed to be generated without the need
for the high-degree of fine-tuning required for single-
model solutions. Typically, however, the models for
the combination process are drawn from the same
model family, though this need not be the case.
This paper summarizes the current direction of
research in combining models, and then demonstrates
a process for combining models from diverse
algorithm families. Results for two datasets are
shown and compared with the most popular methods
for combining models within algorithm families.
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1. Introduction

Many terms have been used to describe the
concept of model combining in recent years.
Elder and Pregibon [1] used the term Blending
to describe "the ancient statistical adage that 'in
many counselors there is safety'". Elder later
called this technique, particularly applied to

combining models from different classifier
algorithm families, Bundling [2]. The same
concept has been described as Ensemble of
Classifiers by Dietterich  [3], Committee of
Experts by Steinberg [4], and Perturb and
Combine (P&C) by Breiman [5]. The concept is
actually quite simple: train several models from
the same dataset, or from samples of the same
dataset, and combine the output predictions,
typically by voting for classification problems
and averaging output values for estimation
problems. The improvements in model accuracy
have been so significant, Friedman el al [6]
stated about one form of model combining
(boosting) "is one of the most important recent
developments in classification methodology."

There is a growing base of support in the
literature for model combining providing
improved model performance. Wolpert [7] used
regression to combine neural network models
(Stacking). Breiman [8] introduced Bagging,
which combines outputs from decision tree
models generated from bootstrap samples (with
replacement) of a training data set. Models are
combined by simple voting. Fruend and Shapire
[9] introduced Boosting, an iterative process of
weighting more heavily cases classified
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incorrectly by decision tree models, and then
combining all the models generated during the
process. ARCing by Breiman [5] is a form of
boosting that, like boosting weighs incorrectly
classified cases more heavily, but instead of the
Fruend and Shapire formula for weighting,
weighted random samples are drawn from the
training data. These are just a few of the most
popular algorithms currently described in the
literature, and researchers have developed many
more methods as well.

While most of the combining algorithms
described above were used to improve decision
tree models, combining can be used more
broadly. Trees often show benefits from
combining because the performance of
individual trees are typically worse than other
data mining methods such as neural networks
and polynomial networks, and because they tend
to be structurally unstable. In other words, small
perturbations in training data set for decision
trees can result in very different model structures
and splits. Nevertheless, results for any data
mining algorithm that can produce significant
model variations can be improved through
model combining, including neural networks
and polynomial networks. Regression, on the
other hand, is not easily improved through
combining models because it produces very
stable and robust models. It is difficult through
sampling of training data or model input
selection to change the behavior of regression
models significantly enough to provide the
diversity needed for combining to improve
single models.

While the reasons combining models works so
well are not rigorously understood, there is
ample evidence that improvements over single
models are typical. Breiman [5] demonstrates

bagging and arcing improving single CART
models on 11 machine learning datasets in every
case. Additionally, he documents that arcing,
using no special data preprocessing or classifier
manipulation (just read the data and create the
model), often achieves the performance of
handcrafted classifiers that were tailored
specifically for the data.

However, it seems that producing relatively
uncorrelated output predictions in the models to
be combined is necessary to reduce error rates. If
output predictions are highly correlated, little
reduction in error is possible as the "committee
of experts" have no diversity to draw from, and
therefore no means to overcome erroneous
predictions. Decision trees are very unstable in
this regard as small perturbations in the training
data set can produce large differences in the
structure (and predictions) of a model. Neural
networks are sensitive to data used to train the
models and to the many training parameters and
random number seeds that need to be specified
by the analyst. Indeed, many researchers merely
train neural network models changing nothing
but the random seed for weight initialization to
find models that have not converged
prematurely in local minima. Polynomial
networks have considerable structural instability,
as different datasets can produce significantly
different models, though many of the differences
in models produce correlated results; there are
many ways to achieve nearly the same solution.

A strong case can be made for combining
models across algorithm families as a means of
providing uncorrelated output estimates because
the difference in basis functions used to build
the model. For example, decision trees produce
staircase decision boundaries via rules effecting
one variable at a time. Neural networks produce
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smooth decision boundaries from linear basis
functions and a squashing function, and
polynomial networks use cubic polynomials to
produce an even smoother decision boundary.
Abbott [10] showed considerable differences in
classifier performance class by class—
information that is clear to once classifier is
obscure to another. Since it is difficult to gauge
a priori which algorithm(s) will produce the
lowest error for each domain (on unseen data),
combining models across algorithm families
mitigates that risk by including contributions
from all the families.

2. Method for Combining Models
Model combining done here expands on the
bundling research done by Elder [2]. Models
from six algorithm families were trained for
each dataset. To determine which model to use
for each algorithm family, dozens to hundreds of
models were trained and only the single best was
retained; only the best model from each
algorithm family was represented.

2.1. Algorithms and Combining Method
Once the six models were obtained, they were
combined in every unique combination possible,
including all two, three-, four-, five-, and six-
way combinations. Each of the combinations
was achieved by a simple voting mechanism,
with each algorithm model having one vote. To
break ties, however, a slight weighting factor
was used, with the models having the best
performance during training given slightly larger
weight (Table 2.1). For example, if an example
in the evaluation dataset had one vote from a
first-ranked model, and another from a second-
ranked model, the first-ranked model would win
the vote 1.28 to 1.22. The numbers themselves
are arbitrary, and only need to provide a means
to break ties.

Table 2.1: Model Combination Voting Weights to
Break Ties

Model Rank on
Training Data

Weight

First 1.28
Second 1.22
Third 1.16
Fourth 1.10
Fifth 1.05
Sixth 1.00

The six algorithms used were neural networks,
decision trees, k-nearest neighbor, Gaussian
mixture models, radial basis functions, and
nearest cluster models. Five of the six models
for each dataset were created using the PRW by
Unica Technologies [11], and the sixth model
(C5 decision trees) was created using
Clementine by SPSS [12]. Full descriptions of
the algorithms can be found in Kennedy, Lee, et
al [13].

2.2. Datasets
The two datasets used are the glass data from the
UCI machine learning data repository [14] and
the satellite data used in the Statlog project [15].
Characteristics of the datasets are shown in
Table 2.2:

Table 2.2: Dataset Characteristics

Number Examples Number
Inputs/Outputs

Dataset Train Test Eval Vars Classes
Glass 150 0 64 9 6

Satellite 3105 1330 2000 36 6

Training data refers to the cases that were used
to find model weights and parameters. Testing
data was used to check the training results on
independent data, and was used ultimately to
select which model would be selected from
those trained. Training and testing data split
randomly, with 70% of the data used for
training, 30% for testing. No testing data was
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used for the glass dataset because so few
examples were available; models were trained
and pruned to reduce the risk of overfitting the
data.

A third, separate dataset, the evaluation dataset,
was used to report all results shown in this
paper. The evaluation data was not used during
the model selection process, only to score the
individual and combined models, so that bias
would not be introduced. The glass data was
split in such as way as to retain the relative class
representation in both the training and
evaluation datasets.

A breakdown of the number of cases per class is
shown in following two tables, 2.3 and 2.4:
Table 2.3: Glass Data Class Breakdown

Number Examples
Class Train Eval

1 49 21
2 54 22
3 12 5
5 9 4
6 6 3
7 20 9

Note that there are no examples for class 4.
Table 2.4: Satellite Data Class Breakdown

Number Examples
Class Train Test Eval

1 752 320 461
2 323 156 224
3 649 312 397
4 283 132 212
5 343 127 237
7 755 283 470

Note that there are no examples for class 6.

3. Results
Results are compiled single models for each of
the six algorithms, and all possible model
combinations.

Table 3.1: Number of Model Combinations

Number
Models

Number
Combos

1 6
2 15
3 20
4 15
5 6
6 1

The emphasis here is on minimizing classifier
error without going through the process of fine-
tuning the classifiers with domain knowledge to
improve performance— a necessary step for real-
world applications.

3.1. Glass Dataset Results
The single best models for each algorithm
family is shown in Figure 3.1 below. Results are
presented in terms of classification errors, so
smaller numbers (shorter bars) are better. For
each model, a search for the best model
parameters was performed first, increasing the
likelihood that the best model for each algorithm
was found.

Nearest neighbor had perfect training results (by
definition), and the best remaining algorithms
were, in order, neural networks, decision trees,
Gaussian mixture, nearest cluster, and radial
basis functions, and ranged from 28.1% error to
37.5% error. Interestingly, nearest cluster and
Gaussian mixture models, both using PDF
measures, had the best on evaluation data.

Model combinations produced the following
results shown in Figure 3.2. Not all datapoints
can be seen as model combinations sometimes
produce identical error scores. Two interesting
trends can be seen in the figure. First, the trend
is for the percent classification error to decrease
as the number of models combined increases,
though the very best (lowest classification error)
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case occurs with 3 or 4 models. The lower error
rate (23.4%) occurs for the combinations in
Table 3.1 below.

Amazingly, radial basis functions occur in all
four of the best combination, even though it was
clearly the single worst classifier. Each of the
other classifiers was represented exactly twice
except the Gaussian mixture which occurred
once. Radial basis functions also appeared in
two of the four worst combinations of more than
3 classifiers as well (Table 3.2), so it appears
this algorithm is a wild card, and one cannot tell
from the training result alone whether or not it
will combine well. The worst 2-way models
always include neural networks or k-nearest
neighbor, and in these cases, the models were
not improved compared to the single model
results (34.4% for k-nearest neighbor, 31.3 for
neural networks).
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Figure 3.1: Single Model Results on Glass Data
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Figure 3.2: Combine Model Results on Glass Data

Table 3.1 Combinations Yielding Lowest Error Rate

k-Nearest
Neighbor

Neural
Networks

Radial Basis
Functions

Decision
Trees

Nearest
Cluster

Radial Basis
Functions

Decision
Trees

Gaussian
Mixture

Radial Basis
Functions

k-Nearest
Neighbor

Nearest
Cluster

Neural
Networks

Radial Basis
Functions

Table 3.2 Greater than 3-way Combinations
Yielding Highest Error Rate (29.7%)

Decision
Trees

k-Nearest
Neighbor

Nearest
Cluster

Decision
Trees,

Radial
Basis Fn.

Neural
Networks

k-Nearest
Neighbor

Nearest
Cluster

Radial
Basis Fn.

k-Nearest
Neighbor

Nearest
Cluster

Neural
Networks

When the combination model results are
represented only by the error summary statistics
(minimum, maximum, and average), the trends
become clearer, as seen in Figure 3.3.
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Figure 3.3: Combine Model Trend on Glass Data

The average model error never gets worse as
more models are added to the combinations.
Additionally, the spread between the best and
the worst shrinks as the number of models
combined increases: both bias and variance are
reduced: the error was reduced by 4.7%, a
16.7% error reduction compared to the best
Gaussian mixture model which had 28.1% error.
However, the reduction found here is not as
good as the reduction found by Brieman [5]
using boosting (Figure 3.4), which brought the
error down to 21.6%.
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Figure 3.4: Comparison of Model Combination
with Breiman Arcing.

3.2. Satellite Dataset Results
Results for the satellite data are similar to the
glass data. First see in Figure 3.5 the train, test,
and evaluation results for the single models.
Results are more uniform than for the glass data,
but radial basis functions and decision trees are
the worst performers on evaluation data. The
best are nearest neighbor, neural networks, and
Gaussian mixture models.
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Figure 3.5: Single Model Results on Satellite Data

The trends are shown in Figure 3.6. Once again
the errors and the spread between maximum and
minimum errors are both reduced as the number
of combined models increases, though once
again the very best models occur for the 3-way
combination (k-Nearest Neighbor, Neural
Network, Radial Basis Function, and the same
three with Decision Trees). Once again, radial
basis functions are involved in the best
combination, and again are also involved in the
worst combination models.
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Figure 3.6: Combine Model Trend on Satellite
Data

Comparing the model combination results to
Breiman's results using Arcing (boosting) shows
once again the boosting algorithm performing
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better, though the combination betters bagging
by a small amount here.
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Figure 3.7: Comparison of Model Combination
with Breiman Arcing.

4. Conclusions and Discussion

Clearly, combining models improves model
accuracy and reduces model variance, and the
more models combined (up to the number
investigated in this paper), the better the result.
However, determining which individual models
combine best from training results only is
difficult— there is no clear trend. Simply
selecting the best individual models does not
necessarily lead to a better combined result.

While combining models across algorithm
families reduces error compared to the best
single models, it does not perform as well as
boosting. The advantage of boosting over simple
model combining is that boosting acts directly to
reduce error cases, whereas combining works
indirectly. The model combining voting methods
are not tuned to take into account the confidence
that a classification decision is made correctly,
nor do they concentrate more heavily on the
difficult cases. More research is necessary to
confirm these suggested explanations.
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